Ask an expert. Trust the answer.

Your academic and career questions answered by verified experts

Comparing fsolve results in python and matlab

Date: 2022-10-07 14:35:22

I have a follow up question to the post written a couple days ago, thank you for the previous feedback:

Finding complex roots from set of non-linear equations in python

I have gotten the set non-linear equations set up in python now so that fsolve will handle the real and imaginary parts independently. However, there are still problems with the python "fsolve" converging to the correct solution. I have exactly the same inputs that are used in Matlab, and after double checking, the set of equations are exactly the same as well. Matlab, no matter how I set the initial values, will always converge to the correct solution. With python however, every initial condition produces a different result, and never the correct one. After a fraction of a second, the following warning appears with python: 

/opt/local/Library/Frameworks/Python.framework/Versions/Current/lib/python2.7/site-packages/scipy/optimize/minpack.py:227: 
RuntimeWarning: The iteration is not making good progress, as measured by the 
improvement from the last ten iterations.
warnings.warn(msg, RuntimeWarning)  

I was wondering if there are some known differences between the fsolve in python and Matlab, and if there are some known methods to optimize the performance in python.

Thank you very much

Expert Answer:

I don't think that you should rely on the fact that the names are the same. I see from your other question that you are specifying that Matlab's fsolve use the 'levenberg-marquardt' algorithm rather than the default. Python's scipy.optimize.fsolve uses MINPACK's hybrd algorithms. Levenberg-Marquardt finds roots approximately by minimizing the sum of squares of the function and is quite robust. It is not a true root-finding method like the default 'trust-region-dogleg' algorithm. I don't know how the hybrd schemes work, but they claim to be a modification of Powell's method.

If you want something similar to what you're doing in Matlab, I'd look for an optimization scheme that implements Levenberg-Marquardt, such as scipy.optimize.root, which you were also using in your previous question. Is there a reason why you're not using that?

 

Why Matlabhelpers ?

Looking for reliable MATLAB assignment help? Our expert MATLAB tutors deliver high-quality, easy-to-understand solutions tailored to your academic needs. Whether you're studying at Monash University, the University of Sydney, UNSW, or the University of Melbourne, we provide trusted MATLAB assistance to help you excel. Contact us today for the best MATLAB solutions online and achieve academic success!

MATLAB Assignment Help Services

Personalized Tutoring: Get one-on-one guidance from our MATLAB experts. Whether you're tackling basic concepts or advanced algorithms, we provide clear, step-by-step explanations to help you master MATLAB with confidence.

Assignment Assistance: Struggling with tight deadlines or complex assignments? Our team offers end-to-end support, from problem analysis to code development and debugging, ensuring your assignments meet the highest academic standards.

Project Development: Need expert help with your MATLAB research project? We assist in designing and implementing robust solutions, covering project planning, data collection, coding, simulation, and result analysis.

Coursework Support: Enhance your understanding of MATLAB with our comprehensive coursework assistance. We help you grasp lecture concepts, complete lab exercises, and prepare effectively for exams.

Thesis and Dissertation Guidance: Incorporate MATLAB seamlessly into your thesis or dissertation. Our experts provide support for data analysis, modeling, and simulation, ensuring your research is methodologically sound and impactful.

Contact us on WhatsApp for MATLAB help

Contact us on Telegram for MATLAB solutions