Ask an expert. Trust the answer.

Your academic and career questions answered by verified experts

Getting Fourier Transform from Phase and Magnitude - Matlab

Date: 2023-02-22 14:00:31

The magnitude and phase of a fourier transform F are defined as:

Mag = sqrt(Real(F)^2 + Imaginary(F)^2)

and 

Phase = arctan(Imaginary(F)/Real(F))

Ive tried to write matlab code that takes in a grayscale image matrix, performs fft2() on the matrix and then calculates the magnitude and phase from the transform. I then wish to calculate the imaginary and real parts of the fourier transform. This is done by rearranging the first two equations into: 

 

Real = Mag/sqrt(1 + tan(Phase)^2)

and 

 

Imaginary = Real*tan(Phase)

and finally combining and inverse fft2: 

 

F = Real + i*Imaginary
image = ifft2(F)

I'd expect to see the same image as the input, but i get garbage. Is my maths wrong? My matlab mfile code is as follows: 

 

function y = forwardBackwardFFT(image)

F = fft2(image);
mag = sqrt(real(F).^2 + imag(F).^2);
phase = atan(imag(F)./real(F));

re = sqrt((mag.^2)./(1 + tan(phase).^2));
im = re.*tan(phase);
F = re + i*im;
f = ifft2(F);

subplot(1,2,1);
imshow(image);
Title('Original Image');

subplot(1,2,2);
imshow(f);
Title('Image after forward and backward FFT');
y = f;

thanks a lot :) 

Expert Answer:

:

Your function is trying to test two things at once: (1) FFT and inverse FFT an image, and (2) disassemble a complex number into real and imaginary parts, transform to amplitude and phase, and then put it back together again. Instead of trying the whole thing at once and wondering why it doesn't work, you should test each of these two functions separately.

To test whether ifft(fft(image)) gives back the original image, you can just remove or comment out all the complex number manipulations: 

 

function y = forwardBackwardFFT(image)

F = fft2(image);
%# stuff removed
f = ifft2(F);

subplot(1,2,1);
imshow(image);
title('Original Image');

subplot(1,2,2);
imshow(f, []);
title('Image after forward and backward FFT');
y = f;

This works. So the problem is with your complex number manipulations. Consider what happens when phase=0 or phase=pi/2. The tangent of 0 is 0, leading to a division by zero; and tan(pi/2) is infinite.

Here is some code that works: 

 

mag =  sqrt(real(F).^2 + imag(F).^2);
phase = atan2(imag(F),real(F));

re = mag .* cos(phase);
im = mag .* sin(phase);
F = re + 1i*im;

You will have to do imagesc(abs(f)) in order to show the resulting inverse-transformed image, to get rid of a (nearly zero) imaginary component.

A more idiomatic way to get the magnitude and phase of a complex number is to simply do: 

 

mag = abs(F);
phase = angle(F);

Hope this helps.

Why Matlabhelpers ?

Looking for reliable MATLAB assignment help? Our expert MATLAB tutors deliver high-quality, easy-to-understand solutions tailored to your academic needs. Whether you're studying at Monash University, the University of Sydney, UNSW, or the University of Melbourne, we provide trusted MATLAB assistance to help you excel. Contact us today for the best MATLAB solutions online and achieve academic success!

MATLAB Assignment Help Services

Personalized Tutoring: Get one-on-one guidance from our MATLAB experts. Whether you're tackling basic concepts or advanced algorithms, we provide clear, step-by-step explanations to help you master MATLAB with confidence.

Assignment Assistance: Struggling with tight deadlines or complex assignments? Our team offers end-to-end support, from problem analysis to code development and debugging, ensuring your assignments meet the highest academic standards.

Project Development: Need expert help with your MATLAB research project? We assist in designing and implementing robust solutions, covering project planning, data collection, coding, simulation, and result analysis.

Coursework Support: Enhance your understanding of MATLAB with our comprehensive coursework assistance. We help you grasp lecture concepts, complete lab exercises, and prepare effectively for exams.

Thesis and Dissertation Guidance: Incorporate MATLAB seamlessly into your thesis or dissertation. Our experts provide support for data analysis, modeling, and simulation, ensuring your research is methodologically sound and impactful.

Contact us on WhatsApp for MATLAB help

Contact us on Telegram for MATLAB solutions