Ask an expert. Trust the answer.

Your academic and career questions answered by verified experts

Getting Fourier Transform from Phase and Magnitude - Matlab

Date: 2023-02-22 14:00:31

The magnitude and phase of a fourier transform F are defined as:

Mag = sqrt(Real(F)^2 + Imaginary(F)^2)

and 

Phase = arctan(Imaginary(F)/Real(F))

Ive tried to write matlab code that takes in a grayscale image matrix, performs fft2() on the matrix and then calculates the magnitude and phase from the transform. I then wish to calculate the imaginary and real parts of the fourier transform. This is done by rearranging the first two equations into: 

 

Real = Mag/sqrt(1 + tan(Phase)^2)

and 

 

Imaginary = Real*tan(Phase)

and finally combining and inverse fft2: 

 

F = Real + i*Imaginary
image = ifft2(F)

I'd expect to see the same image as the input, but i get garbage. Is my maths wrong? My matlab mfile code is as follows: 

 

function y = forwardBackwardFFT(image)

F = fft2(image);
mag = sqrt(real(F).^2 + imag(F).^2);
phase = atan(imag(F)./real(F));

re = sqrt((mag.^2)./(1 + tan(phase).^2));
im = re.*tan(phase);
F = re + i*im;
f = ifft2(F);

subplot(1,2,1);
imshow(image);
Title('Original Image');

subplot(1,2,2);
imshow(f);
Title('Image after forward and backward FFT');
y = f;

thanks a lot :) 

Expert Answer:

:

Your function is trying to test two things at once: (1) FFT and inverse FFT an image, and (2) disassemble a complex number into real and imaginary parts, transform to amplitude and phase, and then put it back together again. Instead of trying the whole thing at once and wondering why it doesn't work, you should test each of these two functions separately.

To test whether ifft(fft(image)) gives back the original image, you can just remove or comment out all the complex number manipulations: 

 

function y = forwardBackwardFFT(image)

F = fft2(image);
%# stuff removed
f = ifft2(F);

subplot(1,2,1);
imshow(image);
title('Original Image');

subplot(1,2,2);
imshow(f, []);
title('Image after forward and backward FFT');
y = f;

This works. So the problem is with your complex number manipulations. Consider what happens when phase=0 or phase=pi/2. The tangent of 0 is 0, leading to a division by zero; and tan(pi/2) is infinite.

Here is some code that works: 

 

mag =  sqrt(real(F).^2 + imag(F).^2);
phase = atan2(imag(F),real(F));

re = mag .* cos(phase);
im = mag .* sin(phase);
F = re + 1i*im;

You will have to do imagesc(abs(f)) in order to show the resulting inverse-transformed image, to get rid of a (nearly zero) imaginary component.

A more idiomatic way to get the magnitude and phase of a complex number is to simply do: 

 

mag = abs(F);
phase = angle(F);

Hope this helps.

Why Matlabhelpers ?

Our Matlab assignment helpers for online MATLAB assignment help service take utmost care of your assignments by keeping the codes simple yet of high-quality. We offer the most reliable MATLAB solutions to students pursuing their Computer Science course from the Monash University, the University of Sydney, the University of New South Wales, the University of Melbourne; to name a few. Approach us today for best Matlab solutions online!

Our Comprehensive Matlab Assignment Help Services

Personalized Tutoring:Our team of MATLAB experts offers one-on-one tutoring sessions tailored to your specific needs. Whether you’re struggling with basic concepts or advanced algorithms, we provide clear, step-by-step guidance to help you understand and master MATLAB.

Assignment Assistance:Facing tight deadlines or complex assignments? We’re here to help! From initial problem analysis to code development and debugging, we offer full-spectrum support to ensure your assignments meet the highest standards.

Project Development: Need help with a research project? Our specialists can assist you in designing and implementing robust MATLAB solutions. We cover everything from project planning and data collection to coding, simulation, and result analysis.

Coursework Support: We provide comprehensive support for your coursework, helping you understand lectures, complete lab exercises, and prepare for exams. Our goal is to ensure you grasp the core principles and practical applications of MATLAB.

Thesis and Dissertation Guidance:Writing a thesis or dissertation? Our experts can assist you in incorporating MATLAB for data analysis, modeling, and simulation. We help you develop a strong methodological framework and ensure your research stands out.

whatsApp order on matlabhelpers.com

telegram order on matlabsolutions.com