Ask an expert. Trust the answer.

Your academic and career questions answered by verified experts

Single layer neural network [closed]

Date: 2022-11-24 14:25:21

For the implementation of single layer neural network, I have two data files. 

 

 In:
    0.832 64.643
    0.818 78.843

Out:
    0 0 1
    0 0 1

The above is the format of 2 data files.

The target output is "1" for a particular class that the corresponding input belongs to and "0" for the remaining 2 outputs.

The problem is as follows: 

Your single layer neural network will find A (3 by 2 matrix) and b (3 by 1 vector) in Y = A*X + b where Y is [C1, C2, C3]' and X is [x1, x2]'.

To solve the problem above with a neural network, we can re-write the equation as follow: Y = A' * X' where A' = [A b] (3 by 3 matrix) and X' is [x1, x2, 1]'

Now you can use a neural network with three input nodes (one for x1, x2, and 1 respectively) and three outputs (C1, C2, C3).

The resulting 9 (since we have 9 connections between 3 inputs and 3 outputs) weights will be equivalent to elements of A' matrix. 

Basicaly, I am trying to do something like this, but it is not working: 

 

function neuralNetwork   
    load X_Q2.data
    load T_Q2.data
    x = X_Q2(:,1);
    y = X_Q2(:,2);

    learningrate = 0.2;
    max_iteration = 50;

    % initialize parameters
    count = length(x);
    weights = rand(1,3); % creates a 1-by-3 array with random weights
    globalerror = 0;
    iter = 0;
    while globalerror ~= 0 && iter <= max_iteration
        iter = iter + 1;
        globalerror = 0;
        for p = 1:count
            output = calculateOutput(weights,x(p),y(p));
            localerror = T_Q2(p) - output
            weights(1)= weights(1) + learningrate *localerror*x(p);
            weights(2)= weights(1) + learningrate *localerror*y(p);
            weights(3)= weights(1) + learningrate *localerror;
            globalerror = globalerror + (localerror*localerror);
        end 
    end  

I write this function in some other file and calling it in my previous code. 

 

function result = calculateOutput (weights, x, y)
    s = x * weights(1) + y * weights(2) + weights(3);
    if s >= 0
        result = 1;
    else
        result = -1;
    end 

Expert Answer:

I can spot a few problems with the code. The main issue is that the target is multi-class (not binary), so you need to either use 3 output nodes one for each class (called 1-of-N encoding), or use a single output node with a different activation function (something capable of more than just binary output -1/1 or 0/1)

In the solution below, the perceptron has the following structure: 

 

%# load your data
input = [
    0.832 64.643
    0.818 78.843
    1.776 45.049
    0.597 88.302
    1.412 63.458
];
target = [
    0 0 1
    0 0 1
    0 1 0
    0 0 1
    0 0 1
];

%# parameters of the learning algorithm
LEARNING_RATE = 0.1;
MAX_ITERATIONS = 100;
MIN_ERROR = 1e-4;

[numInst numDims] = size(input);
numClasses = size(target,2);

%# three output nodes connected to two-dimensional input nodes + biases
weights = randn(numClasses, numDims+1);

isDone = false;               %# termination flag
iter = 0;                     %# iterations counter
while ~isDone
    iter = iter + 1;

    %# for each instance
    err = zeros(numInst,numClasses);
    for i=1:numInst
        %# compute output: Y = W*X + b, then apply threshold activation
        output = ( weights * [input(i,:)';1] >= 0 );                       %#'

        %# error: err = T - Y
        err(i,:) = target(i,:)' - output;                                  %#'

        %# update weights (delta rule): delta(W) = alpha*(T-Y)*X
        weights = weights + LEARNING_RATE * err(i,:)' * [input(i,:) 1];    %#'
    end

    %# Root mean squared error
    rmse = sqrt(sum(err.^2,1)/numInst);
    fprintf(['Iteration %d: ' repmat('%f ',1,numClasses) '\n'], iter, rmse);

    %# termination criteria
    if ( iter >= MAX_ITERATIONS || all(rmse < MIN_ERROR) )
        isDone = true;
    end
end

%# plot points and one-against-all decision boundaries
[~,group] = max(target,[],2);                     %# actual class of instances
gscatter(input(:,1), input(:,2), group), hold on
xLimits = get(gca,'xlim'); yLimits = get(gca,'ylim');
for i=1:numClasses
    ezplot(sprintf('%f*x + %f*y + %f', weights(i,:)), xLimits, yLimits)
end
title('Perceptron decision boundaries')
hold off 

The results of training over the five sample you provided: 

 

Iteration 1: 0.447214 0.632456 0.632456 
Iteration 2: 0.000000 0.447214 0.447214 
...
Iteration 49: 0.000000 0.447214 0.447214 
Iteration 50: 0.000000 0.632456 0.000000 
Iteration 51: 0.000000 0.447214 0.000000 
Iteration 52: 0.000000 0.000000 0.000000  

Note that the data used in the example above only contains 5 samples. You would get more meaningful results if you had more training instances in each class.

Why Matlabhelpers ?

Looking for reliable MATLAB assignment help? Our expert MATLAB tutors deliver high-quality, easy-to-understand solutions tailored to your academic needs. Whether you're studying at Monash University, the University of Sydney, UNSW, or the University of Melbourne, we provide trusted MATLAB assistance to help you excel. Contact us today for the best MATLAB solutions online and achieve academic success!

MATLAB Assignment Help Services

Personalized Tutoring: Get one-on-one guidance from our MATLAB experts. Whether you're tackling basic concepts or advanced algorithms, we provide clear, step-by-step explanations to help you master MATLAB with confidence.

Assignment Assistance: Struggling with tight deadlines or complex assignments? Our team offers end-to-end support, from problem analysis to code development and debugging, ensuring your assignments meet the highest academic standards.

Project Development: Need expert help with your MATLAB research project? We assist in designing and implementing robust solutions, covering project planning, data collection, coding, simulation, and result analysis.

Coursework Support: Enhance your understanding of MATLAB with our comprehensive coursework assistance. We help you grasp lecture concepts, complete lab exercises, and prepare effectively for exams.

Thesis and Dissertation Guidance: Incorporate MATLAB seamlessly into your thesis or dissertation. Our experts provide support for data analysis, modeling, and simulation, ensuring your research is methodologically sound and impactful.

Contact us on WhatsApp for MATLAB help

Contact us on Telegram for MATLAB solutions