Ask an expert. Trust the answer.

Your academic and career questions answered by verified experts

Expert Answer:

s:

The plot shows time along the horizontal axis, and frequency along the vertical axis. With pixel color showing the intensity of each frequency at each time.

A spectrogram is generated by taking a signal and chopping it into small time segments, doing a Fourier series on each segment.

here is some matlab code to generate one.

Notice how plotting the signal directly, it looks like garbage, but plotting the spectrogram, we can clearly see the frequencies of the component signals.

 

%%%%%%%%
%% setup
%%%%%%%%

%signal length in seconds
signalLength = 60+10*randn();

%100Hz sampling rate
sampleRate = 100;
dt = 1/sampleRate;

%total number of samples, and all time tags
Nsamples = round(sampleRate*signalLength);
time = linspace(0,signalLength,Nsamples);

%%%%%%%%%%%%%%%%%%%%%
%create a test signal
%%%%%%%%%%%%%%%%%%%%%

%function for converting from time to frequency in this test signal
F1 = @(T)0+40*T/signalLength; #frequency increasing with time
M1 = @(T)1-T/signalLength;    #amplitude decreasing with time

F2 = @(T)20+10*sin(2*pi()*T/signalLength); #oscilating frequenct over time
M2 = @(T)1/2;                              #constant low amplitude

%Signal frequency as a function of time
signal1Frequency = F1(time);
signal1Mag = M1(time);

signal2Frequency = F2(time);
signal2Mag = M2(time);

%integrate frequency to get angle
signal1Angle = 2*pi()*dt*cumsum(signal1Frequency);
signal2Angle = 2*pi()*dt*cumsum(signal2Frequency);

%sin of the angle to get the signal value
signal = signal1Mag.*sin(signal1Angle+randn()) + signal2Mag.*sin(signal2Angle+randn());

figure();
plot(time,signal)


%%%%%%%%%%%%%%%%%%%%%%%
%processing starts here
%%%%%%%%%%%%%%%%%%%%%%%

frequencyResolution = 1
%time resolution, binWidth, is inversly proportional to frequency resolution
binWidth = 1/frequencyResolution;

%number of resulting samples per bin
binSize = sampleRate*binWidth;

%number of bins
Nbins = ceil(Nsamples/binSize);

%pad the data with zeros so that it fills Nbins
signal(Nbins*binSize+1)=0;
signal(end) = [];

%reshape the data to binSize by Nbins
signal = reshape(signal,[binSize,Nbins]);

%calculate the fourier transform
fourierResult = fft(signal);

%convert the cos+j*sin, encoded in the complex numbers into magnitude.^2
mags= fourierResult.*conj(fourierResult);

binTimes = linspace(0,signalLength,Nbins);
frequencies = (0:frequencyResolution:binSize*frequencyResolution);
frequencies = frequencies(1:end-1);

%the upper frequencies are just aliasing, you can ignore them in this example.
slice = frequencies<max(frequencies)/2;

%plot the spectrogram
figure();
pcolor(binTimes,frequencies(slice),mags(slice,:));

The inverse Fourier transform of the fourierResult matrix, will return the original signal.

Why Matlabhelpers ?

Looking for reliable MATLAB assignment help? Our expert MATLAB tutors deliver high-quality, easy-to-understand solutions tailored to your academic needs. Whether you're studying at Monash University, the University of Sydney, UNSW, or the University of Melbourne, we provide trusted MATLAB assistance to help you excel. Contact us today for the best MATLAB solutions online and achieve academic success!

MATLAB Assignment Help Services

Personalized Tutoring: Get one-on-one guidance from our MATLAB experts. Whether you're tackling basic concepts or advanced algorithms, we provide clear, step-by-step explanations to help you master MATLAB with confidence.

Assignment Assistance: Struggling with tight deadlines or complex assignments? Our team offers end-to-end support, from problem analysis to code development and debugging, ensuring your assignments meet the highest academic standards.

Project Development: Need expert help with your MATLAB research project? We assist in designing and implementing robust solutions, covering project planning, data collection, coding, simulation, and result analysis.

Coursework Support: Enhance your understanding of MATLAB with our comprehensive coursework assistance. We help you grasp lecture concepts, complete lab exercises, and prepare effectively for exams.

Thesis and Dissertation Guidance: Incorporate MATLAB seamlessly into your thesis or dissertation. Our experts provide support for data analysis, modeling, and simulation, ensuring your research is methodologically sound and impactful.

Contact us on WhatsApp for MATLAB help

Contact us on Telegram for MATLAB solutions